КАРЕЛЬСКИЙ НАУЧНЫЙ ЦЕНТР РОССИЙСКОЙ АКАДЕМИИ НАУК ИНСТИТУТ ГЕОЛОГИИ

ГЕОЛОГИЯ, ПОЛЕЗНЫЕ ИСКОПАЕМЫЕ И ГЕОЭКОЛОГИЯ СЕВЕРО-ЗАПАДА РОССИИ

Материалы XVII молодежной научной конференции, посвященной памяти К.О.Кратца

ГЕОЛОГИЯ, ПОЛЕЗНЫЕ ИСКОПАЕМЫЕ И ГЕОЭКОЛОГИЯ СЕВЕРО-ЗАПАДА РОССИИ

Материалы XVII молодежной научной конференции, посвященной памяти К.О.Кратца

Организационный комитет конференции

Председатель Оргкомитета

Щипцов В.В. – д.г.-м.н., директор ИГ КарНЦ РАН, г.Петрозаводск

Зам. председателя Оргкомитета

Голубев А.И. – к.г.-м.н., зам. директора ИГ КарНЦ РАН, г.Петрозаводск

Секретарь Оргкомитета

Матвеева Т.С. – ИГ КарНЦ РАН, г.Петрозаводск

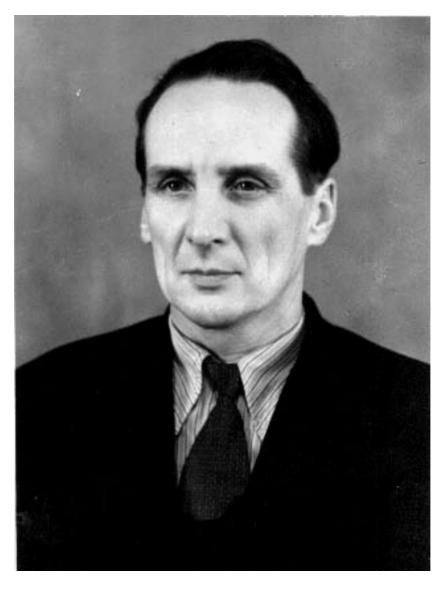
Члены Оргкомитета

Вревский А.Б. – д.г.-м.н., зам. директора ИГГД РАН, Санкт-Петербург

Глебовицкий В.А. – проф., чл.-корр. РАН, Санкт-Петербург

МитрофановФ.П. – академик РАН, директор ГИ КНЦ РАН г. Апатиты

Светов С.А. — д.г.-м.н., ИГ КарНЦ РАН, г.Петрозаводск **Степанова А.В.** — к.г.-м.н., ИГ КарНЦ РАН, г.Петрозаводск


Филиппов Н.Б. – к.г.-м.н., директор ФГУП «Минерал», Санкт-Петербург

В сборнике помещены доклады, сделанные 9-12 октября 2006 года в г. Петрозаводск молодыми учеными из академических, учебных и производственных организаций европейской части России из гг. Апатиты, Воронеж, Петрозаводск, Санкт-Петербург, Сыктывкар, Москва. Он состоит из шести тематических частей – Геология и рудно-магматические системы, – Минералогия и кристаллография, – Петрология, геохимия и геохронология, – Четвертичная геология, – Геофизика и петрофизика, – Геоэкология, мониторинг окружающей среды. Большинство статей решают не только региональные проблемы геологии и экологии, но и имеют общее научное, прикладное и методическое значение.

Редколлегия: Голубев А.И. (научный редактор), Степанова А.В, Матвеева Т.С.

Материалы конференции отпечатаны в авторской редакции.

Конференция проводится при финансовой поддержке Российского фонда фундаментальных исследований (грант № 06-05-74082г) и Министерства промышленности и природных ресурсов Республики Карелия.

К.О. Кратц (1914–1983)

ГЕОЛОГ-ИСЛЕДОВАТЕЛЬ КАУКО КРАТЦ

Кауко Оттович Кратц, заслуженный деятель науки Карельской АССР, лауреат Государственной премии СССР и премии АН СССР имени А.П.Карпинского, кавалер двух орденов Трудового Красного Знамени, член-корреспондент АН СССР, доктор геолого-минералогических наук, родился 16 июня 1914 года в семье рабочего-плотника в канадском городе Седбери. В этом городе он окончил Горно-техническое училище. Родители, эмигрировали в 1906 году из Финляндии в Канаду, а в 1932 году переехали в СССР и получили советское гражданство. С 1932 г. по 1934 г. он работал в г.Петрозаводске, сначала преподавателем в строительном техникуме, а затем техником-конструктором на авторемонтном заводе. В 1934 году поступил учиться на геолого-почвенно-географический факультет Ленинградского государственного университета, который окончил в 1939 году по специальности «геохимия». С 1939г. по 1941 г. работал геологом в Ленинградском геологическом управлении по геологической съемке на Кольском полуострове. В 1941 году Кратц был призван на военную службу в Истребительные части УНКВД г.Ленинграда. Весной 1942 г. по состоянию здоровья был демобилизован и по выходе из госпиталя эвакуировался в г.Иркутск. Работал в Сибгеолнерудтресте и занимался геологической съемкой районов слюдяных месторождений Восточной Сибири (Бирюсинский и Мамско-Витимский).

В 1946 г. (прим. в этом году отмечается 60-летие Карельского научного центра РАН) он был принят на должность мнс в сектор геологии КФ научно-исследовательской базы, затем был старшим научным сотрудником и впоследствии руководителем отдела региональной геологии. Здесь он проводил тематические иссле-

Материалы XIV молодежной научной конференции «ГЕОЛОГИЯ, ПОЛЕЗНЫЕ ИСКОПАЕМЫЕ И ГЕОЭКОЛОГИЯ СЕВЕРО-ЗАПАДА РОССИИ»

дования по геологии и петрологии основных пород южной Карелии, а с 1948 г. по 1957 г. по стратиграфии и тектонике протерозоя Карелии. С 1949 г. по 1958 г. в Петрозаводском государственном университете одновременно читал курсы по общей петрографии, физико-химическим основам петрографии, структурной геологии и учению о геологических формациях.

По поручению Северо-Западного геологического управления с 1952 г. по 1960 г. был редактором подготовленного СЗГУ к изданию Государственных геологических карт масштаба 1:1000000 территории Карелии и Кольского полуострова, а затем тома XXXVII Геологии СССР (Карельская АССР). Этот том содержит первое сводное описание, охватывающее стратиграфию, тектонику, магматизм, полезные ископаемые и др. особенности региона.

Схема стратиграфии докембрия, предложенная К.О.Кратцем, легла в основу государственных геологических карт территории Карелии разного масштаба. Вышедшая в свет в 1964 г. книга "Геология карелид Карелии" оказала очень большое влияние на развитие учения о геологии докембрия в СССР.

Весной 1962 г. Кратц защитил докторскую диссертацию. С 1962 г. по 1966 г. работал директором Петрозаводского Института геологии. С 1966 г. до конца своих дней был директором Института геологии и геохронологии АН СССР в Ленинграде. В 1982 году Президиум АН СССР присудил К.Кратцу премию имени А.П.Карпинского за серию работ по теме "Докембрийская земная кора материков, ее становление и эволю-

Под руководством Кратца были составлены Геохронологическая карта восточной части Балтийского щита (1966), Геохронологическая карта Сибирской платформы и ее складчатого обрамления (1968), Геологическая карта фундамента европейской части СССР (1967), Палеотектонические карты раннего и среднего протерозоя СССР (1968), Тектоническая карта фундамента территории СССР (1974), Карта метаморфических поясов СССР (1974) и др.

Ему принадлежит огромная роль в развитии научного направления по геологии докембрия. Вполне заслуженно он в числе группы специалистов удостоен Государственной премии СССР за реализацию крупнейшего советско-финляндского проекта по освоению Костомукшского железорудного месторождения.

На протяжении 9 лет Кауко Кратц был сопредседателем советско-финляндской рабочей группы по научно-техническому сотрудничеству в области геологии. Успех сотрудничества на этой начальной стадии связан с именами первых сопредседателей Рабочей Группы. Это Герман Стигцелиус, директор Геологического института Финляндии, имевший большой опыт работы в ООН, и Кауко Кратц, чл-корр АН СССР. Заседания Группы проводились ежегодно и поочередно: сначала на территории СССР (дважды в Петрозаводске) и потом – в Финляндии. Как правило, планировались и геологические экскурсии, посещение предприятий горной промышленности и ведущих научно-исследовательских и производственных геологических организаций. Накопленный опыт облегчал развитие международных связей. На этом фундаменте Институт геологии продолжает активные контакты с Геологической Службой Финляндии, свидетельством чему является подписанный долгосрочный Меморандум о сотрудничестве Геологической службы Финляндии и Института геологии в апреле 2005 г. в г.Петрозаводске.

До последних минут своей жизни, которая оборвалась 23 января 1983 г. в Ленинграде, Кауко Оттович сохранял оптимизм, работоспособность, жизнелюбие и трудолюбие.

Геологическая общественность 16 июня 2004 г. отметила 90-летие со дня рождения Кауко Оттовича Кратца. В этот день были возложены цветы на могилу К.О.Кратца на Сулажгорском кладбище в г.Петрозаводске, открыта мемориальная доска на здании Института геологии К.О.Кратцу в знак признания выдающихся заслуг геолога в исследованиях региональной геологии Карелии. Вот цитата из письма Калеви Кауранне, эксгенерального директора Геологической Службы Финляндии, написанного к 90-летию:

«...Я храню добрые воспоминания о старом и любимом друге. Кауко имел способность вдохновлять своих коллег... В Карелии прекрасные озера, сияющие белые березы, дружелюбие коллег и всех людей произвели на меня незабываемые впечатления. Вы имеете прекрасные полевые объекты для работы. Я надеюсь, что вы будете продолжать все дела в духе Кауко Кратца.»

Кратц отличался заботой о молодых исследователях, умел направить ход научной мысли в нужное русло. И вот уже традицией стало ежегодно проводить молодежные конференции, посвященные памяти К.О.Кратца. В этом году 17-ая конференция пройдет на берегу Онего. Материалы этой конференции у вас на руках. Несколько раз подобная конференция организовывалась в Петрозаводске. Последняя прошла осенью 2003 года по проблеме «Геология и геоэкология Северо-запада России».

Желаю успешной работы участникам конференции и дальнейших новых творческих плодотворных шагов в геологических исследованиях.

Директор Института геологии КарНЦ РАН, д.г.-м.н., профессор ПетрГУ В.В.Щипцов

ГЕОЛОГИЯ И РУДНО-МАГМАТИЧЕСКИЕ СИСТЕМЫ

По данным, приведенным на рис. 4, сделан вывод о том, что растяжение происходило вдоль линии, погружающейся к восток-северо-востоку 78° под углом 2°.

Автор глубоко благодарен В.В. Балаганскому и Р.А. Елисееву за помощь в работе.

ЛИТЕРАТУРА

Астафьев Б.Ю., Воинова О.А., Воинов А.С., Матуков Д.И. Геологическое строение, петрологические особенности и возраст пород имандровской серии верхнего архея (Кольский полуостров) // Геология и геодинамика архея. Мат. I Росс. конф. по пробл. геологии и геодинамики докембрия. СПб.: Центр информ. культуры. 2005. 436 с.

Балаганский В.В. Главные этапы тектонического развития северо-востока Балтийского щита в палеопротерозое. Автореф. дисс. ... докт. геол.-мин. наук. СПб. 2002. 32 с.

Балаганский В.В., Беляев О.А. Золотоносные сдвиговые зоны в раннем докембрии Кольского полуострова: прогноз и первые результаты // Петрография XXI века. Т. 3. Петрология и рудоносность регионов СНГ и Балтийского щита. Апатиты: КНЦ РАН. 2005. С. 37–38.

Беляев О.А. Древнейший фундамент Терской структурной зоны // Геологическое строение и развитие структурных зон докембрия Кольского полуострова. Апатиты: КФ АН СССР. 1980. С. 3–14.

Дэйли Дж.С., Балаганский В.В., Уайтхаус М. Палеопротерозойские тоналит-трондьемит-гранодиоритовые комплексы северной Фенноскандии и их геотектоническое значение // Петрография XXI века. Т. 3. Петрология и рудоносность регионов СНГ и Балтийского щита. Апатиты: КНЦ РАН. 2005. С. 100–102.

Cobbold P.R., Quinquis H. Development of sheath folds in shear regimes // J. Structural Geology. 1980 V. 2. No. 1–2. P. 119–126.

Cox S.F. Deformational controls on the dynamics of fluid flow in mesothermal gold system // Fractures, fluid flow and mineralization. Geol. Soc. London Spec. Publ. 155. 1999. P. 123–140.

Daly J. S., Balagansky V.V., Timmerman M.J. et al. Ion microprobe U-Pb zircon geochronology and isotopic evidence supporting a trans-crustal suture in the Lapland Kola Orogen, northern Fennoscandian Shield // Precambrian Res. 2001. V. 105. Nos. 2–4. P. 289–314.

Hanmer S., Passchier C. Shear-sense indicators: a review // Geological Survey of Canada Paper 90-17. 1991. 72 p.

Ramsay J.G., Huber M.I. The Techniques of Modern Structural Geology. V. 1: Strain analysis. London, etc.: Academic Press. 1983. 307 p.

Ramsay J.G., Huber M.I. The Techniques of Modern Structural Geology. V. 2: Folds and Fractures. London, etc.: Academic Press. 1987. 391 p.

О НЕКОТОРЫХ ЗАКОНОМЕРНОСТЯХ В РАСПРЕДЕЛЕНИИ КАРБОНАТНЫХ ПОРОД СРЕДИ ЛИДИТОВ ШУНГИТ-ДОЛОМИТ-ЛИДИТОВОГО КОМПЛЕКСА В СТАРОМ КАРЬЕРЕ П. ШУНЬГА

Полещук А.В.

Геологический институт РАН, Москва, anton302@mail.ru

Старейшее месторождение шунгитовых пород Карелии в п.Шуньга имеет более чем двухвековую историю и расположено в северо-западной части Заонежского полуострова, на перешейке двух озер - Путкозеро и Валгмозеро.

Породы месторождения образуют синклинальную структуру. Углы падения крыльев в западной части структуры достигают 40-45°, на востоке — 10-15°. Район месторождения Шуньга сложен образованиями верхней подсвиты заонежской свиты людиковия нижнего протерозоя и относится к вулканогенно-осадочному типу [1] и представлен шунгит-доломит-лидитовым комплексом, прослеженным разведочными скважинами на всей площади Шуньгской синклинали.

Основные сведения о месторождении получены Н.И Рябовым в 1932-1933гг. После 1933г разведочные работы в штольне и на карьере более не проводились. В настоящее время для изучения доступны отдельные части старой штольни и северо-восточная и юго-западные стенки карьера (Рис 1), где устанавливается следующая вертикальная последовательность пород:

1. Шунгиты продуктивного горизонта, вскрытые штольней, на отдельных участках содержащие будины карбонатных пород (рис 2). Видимая мощность около 1-1,5м. (На контакте с вышележащими породами местами располагается маломощный прослой шунгитов 1 разновидности).

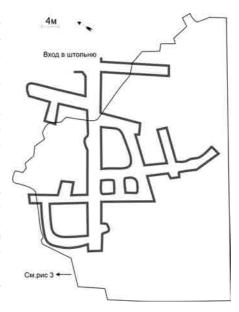


Рис 1. Проекция на дневную поверхность современного плана штольни и очертаний стенок старого карьера в п.Шуньга.

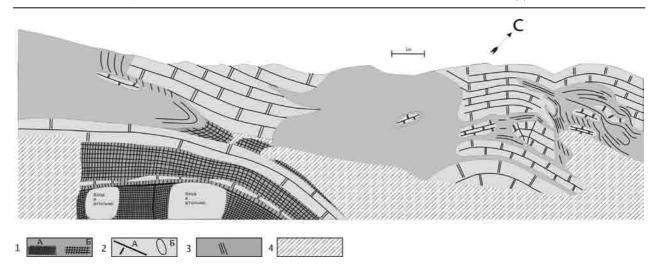


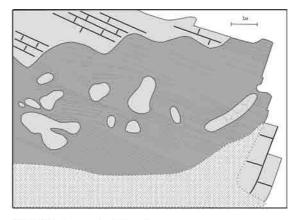
Рис 2. Схема строения северо-восточной стенки старого карьера (над штольней) в п.Шуньга.

- 1 Шунгитовые породы второй (A) и третьей (Б) разновидности; 2 карбонатные породы с трещинами отдельности (A), фрагменты карбонатных пород среди лидитов (Б); 3 лидиты (штрихами показаны трещины скорлуповатой отдельности); 4 задерновка
- 2. Выше располагаются шунгитовые породы 2 и 3 разновидности, мощностью около 1-1,5 м, иногда содержащие вытянутые линзообразные тела карбонатных пород (над входом в штольню). Шунгитовые породы 2 и 3 разновидности с содержанием углерода от 35 до 75% обладают металлоидным блеском, ступенчатым изломом с правильной параллелепипедальной отдельностью, твердостью 3,5.

Шунгиты 1 разновидности (миграционные) залегают в виде жил среди шунгитовых пород 2 и 3 разновидности, а также в виде тончайших жилок с кварцем среди лидитов в контактах с шунгитовыми породами 2 разновидности. Это породы с алмазным блеском и раковистым изломом, хрупкие, твердостью 3,5.

3. Выше располагаются карбонатные породы, формирующие пласт мощностью от 1 м (в тех местах карьера, где выше них располагаются лидиты) до 4-5 м, на тех участках, где лидиты отсутствуют. Иногда среди этих карбонатов устанавливаются маломощные пласты и линзы шунгитов 2 и 3 разновидности.

Трещины отдельности в карбонатах маломощного пласта следуют субперпендикулярно кровле и подошве, а над входом в штольню, где их мощность достигает 4-5 м — образуют систему из следующих в трех направлениях взаимоперпендикулярных трещин. Породы местами смяты в пологие складки (правая часть рисунка № 2)


Выше, местами с отчетливо секущим контактом располагаются лидиты, мощностью около 4 м с рассеянными среди них фрагментами карбонатных пород. Лидиты обладают однородным черным цветом, афанито-

вой текстурой и высокой твердостью - 7. Они также обладают параллелепипедальной и иногда скорлуповатой отдельностью. Параллелепипедальная отдельность лидитов вблизи фрагментов карбонатных пород сменяется на скорлуповатую. Фрагменты карбонатов часто имеют округлую вытянутую форму; трещины отдельности следуют согласно удлинению фрагментов и субперпендикулярно к нему.

Взаимоотношения лидитов и карбонатных пород на микроуровне рассматривались ранее в работах [1,3]. Ранее отмечались явления «втекания» кремнистого геля (будущих лидитов) с «разобщением» более крупных фрагментов карбонатов на более мелкие. Ориентировка скорлуповатой отдельности на таких участках позволяет восстановить направление течения кремнистого геля.

Округлая форма и ориентировка трещин отдельности фрагментов карбонатов указывают на то, что в процессе их «рассеяния» среди лидитов они находились в пластичном состоянии и являются будинами (на что ранее указывали Н.И. Рябов, А.А. Полканов и Н.Г. Судовиков).

Процесс поступления кремнистого геля лидитов в шунгит-карбонатные породы напоминал процесс внедрения силла и сопровождался «захватом» пластичных фрагментов кар-

 $Puc\ 3.$ Схема строения западной стенки старого карьера в п.Шуньга.

1 7 0 2 3

1 – Карбонатные породы с трещинами отдельности (A), фрагменты карбонатных пород среди лидитов (Б); 2 – лидиты (штрихами показаны трещины отдельности); 3 – задерновка

бонатов и их транспортировкой в направлении внедрения, причем, учитывая факт, что в штольне лидитов не обнаружено указыват на то, что процесс этого внедрения происходил в субгоризонтальном направлении.

Замеры ориентировки азимутов падения скорлуповатой отдельности в лидитах вблизи контактов с карбонатными породами в СВ стенке карьера (рис 2) показали, что направление течения кремнистого геля происходило с северо-востока в юго-западном направлении, для западной стенки карьера (рис 3) — в юго-юго-западном направлении, что может быть использовано при палеотектонических реконструкциях.

Работа выполнена при финансовой поддержке РФФИ (проект № 06-05-64848), Научной школы (проект № HIII-7559.2006.5).

ЛИТЕРАТУРА

Л.П. Галдобина, В.В.Ковалевский, Н.Н. Рожкова. Месторождение Шуньга- геология, геохимия, минералогия //Углеродсодержащие формации в геологической истории. Труды международного симпозиума. Петрозаводск, 2000. С.66-72.

Филиппов М.М., Ромашкин А.Е. Генетические признаки формирования месторождений шунгитовых пород Карелии. //Углеродсодержащие формации в геологической истории. Труды международного...Петрозаводск, 2000. С. 58-66. Филиппов М.М Шунгитоносные породы Онежской структуры. Петрозаводск: КНЦ РАН, 2002. 280 с.

СООТНОШЕНИЕ СТУПЕНЕЙ МЕТАМОРФИЗМА В МЕТАПЕЛИТАХ И СИЛИКАТНО-КАРБОНАТНЫХ ПОРОДАХ В УСЛОВИЯХ ЗЕЛЕНОСЛАНЦЕВОЙ И ЭПИДОТ-АМФИБОЛИТОВОЙ ФАЦИЙ

Полякова Т.Н.

Воронежский государственный университет, Воронеж, polyakova@geol.vsu.ru

В настоящее время картирование метаморфической зональности чаще всего проводится по смене минеральных ассоциаций или появлению индекс-минералов в алюмосиликатных низкокальциевых породах (метапелитах), для которых, благодаря высокой чувствительности метапелитовых равновесий к температуре и давлению при практически полной независимости от режима СО₂, разработаны достаточно детальные схемы фаций и субфаций (Кориковский, 1979). Использование для целей картирования силикатно-карбонатных пород в значительной степени затруднено тем, что протекание в них тех или иных фазовых реакций во многом определяется соотношением парциального давления воды и углекислоты во флюиде. Однако в районах, характеризующихся широким развитием карбонатсодержащих метаосадков, минеральные преобразования именно в этой группе пород могут являться единственными индикаторами изменения РТ-параметров метаморфизма. В связи с этим нами была предпринята попытка сопоставить эволюцию фазовых равновесий в метапелитах и силикатно-карбонатных породах на примере раннепротерозойского метаморфического комплекса Тим-Ястребовской структуры Воронежского кристаллического массива, формирование которого происходило в условиях зеленосланцевой и эпидот-амфиболитовой фаций метаморфизма андалузит-силлиманитового типа глубинности.

Алюмосиликатные низкокальциевые породы (метапелиты). Наиболее низкотемпературными парагенезисами в алюмосиликатных низкокальциевых породах Тим-Ястребовской структуры являются Chl+Kfs+Bt+Qtz и Chl+Kfs+Ms+Qtz. Присутствие в породах ассоциации Bt+Kfs свидетельствует о степени метаморфизма, превышающей температурные условия образования биотита в результате реакции железомагнезиальных карбонатов с калиевым полевым шпатом: $Mgs-Sd(Ank-Dol)+Kfs+H_2O=Bt(\pm CaCO_3)+CO_2$. Устойчивость при этом парагенезиса Chl+Kfs позволяет оценить наиболее низкотемпературные условия метаморфизма пород как соответствующие нижней части биотитовой субфации зеленосланцевой фации (хлорит-калишпатовая ступень).

В более метаморфизованных породах Тим-Ястребовской структуры парагенезис хлорита с калиевым полевым шпатом исчезает, сменяясь ассоциацией биотита с мусковитом. В результате протекания реакции $Chl+Kfs=Bt+Ms+Qtz+H_2O$ в метапелитах возникает парагенезис с избыточным хлоритом (Bt+Chl+Ms+Qtz), присутствие которого свидетельствует об условиях метаморфизма, соответствующих верхней части биотитовой субфации, которые мы называем биотит-мусковитовой ступенью.

Широким распространением в парагенезисах изученных метапелитов пользуются гранаты варьирующего спессартин-альмандинового состава. При этом области распространения гранатсодержащих пород занимают вполне закономерное положение, располагаясь между зоной безгранатовых метапелитов с хлоритом и породами, содержащими ставролит и андалузит в ассоциации с биотитом. При этом концентрация марганца в метапелитах колеблется незначительно (0,01-0,34 % масс.), составляя в среднем 0,12 % масс. Это свидетельствует о появлении гранатов в алюмосиликатных низкокальциевых породах Тим-Ястребовской структуры скорее за счет изменения РТ-параметров метаморфизма, чем в результате вариаций содержания в метапелитах МпО, что обусловило правомерность и необходимость выделения в высокотемпературной области зеленосланцевой фации гранатовой субфации. В качестве ее нижней температурной границы нами принято образование спессартина в результате реакции Chl_{мп}+Qtz=Sps+H₂O, а верхней границей служит появление в мине-

СОДЕРЖАНИЕ

ГЕОЛОГИЯ И РУДНО-МАГМАТИЧЕСКИЕ СИСТЕМЫ

Андреев А.В. Геологическое строение, условия локализации и закономерности формирования золотых руд месторождения Новогоднее-Монто (Полярный Урал)	7
Антипов А.А., Гайнанов А.Г. Особенности субдукции при встречном взаимодействии Индо-Австралийской и Евразийской литосферных плит	9
Архиреева А.С., Рундквист Т.В. Восточно-Панский массив: геологическое строение, кумулусная стратиграфия петрохимия (новые данные)	, 12
Березин А.В. Базитовые комплексы Подужемской зоны разломов и их рудная специализация (Карелия,	
Западное Беломорье)	. 13
Вахрушев А. М. Компьютерное моделирование плотностной дифференциации рудоносных расплавных сред	. 16
Вельчева М.И. Современное состояние и разработка пегматитового месторождения Линнаваара (Северное Приладожье, Карелия)	. 19
Вовшин Ю.Е., Петров С.Ю. Рудопроявления благородных металлов в метавулканитах раннего протерозоя и конгломератах Венда участка «Шапочка» (центральная часть структурной зоны ветреный пояс, восточная Карелия)	20
Габов Д.А., Субботин В.В. Платинометальная минерализация Оливинового горизонта Западно-Панского массива	21
	. 24 . 25
Елисеев Г.А. Прогрессивная деформация в налеопротерозойских породах кольского региона Козловский В.М. Природа полосчатых текстур в мигматизированных амфиболитах Хетоламбинской толщи Беломорского комплекса	29
Кораблева О.В. Минеральный и вещественный состав гидротермальных сульфидных руд поля Брокен Спур	31
Кузнецова Н.С. Реконструкция первичного состава пород харбейского комплекса (Полярный Урал)	. 35
Мокрушин А.В., Смолькин В.Ф. Зональность Дунитового блока и рудной залежи Сопчеозерского хромитового месторождения (Мончеплутон)	38
Мудрук С.В. Главные этапы деформации серговской толщи палеопротерозоя юго-востока Кольского региона	. 41
Полещук А.В. О некоторых закономерностях в распределении карбонатных пород среди лидитов шунгит- доломит-лидитового комплекса в старом карьере п. Шуньга	. 45
Полякова Т.Н. Соотношение ступеней метаморфизма в метапелитах и силикатно-карбонатных породах в условиях зеленосланцевой и эпидот-амфиболитовой фаций	. 47
Рудакова А.В. Строение, химизм и условия формирования березовского вулканического комплекса юго-восточной части Магнитогорской мегазоны (Южный Урал)	50
Савичева О.А. Геохимические признаки рудной минерализации Климовской площади (Северная Карелия)	. 52
Сизова Е.В., Ларионова Ю.О. Генетическая и возрастная характеристика золоторудной минерализации месторождения Педролампи, Центральная Карелия	. 54
<i>Турбина Н.Г., Козлова Н.Е., Нерович Л.И</i> . Сравнительная петрографическая характеристика гранитоидов Мурманского домена	57
Фурина М.А. Геологическое строение и состав гранитоидного массива Чека	
Шанина В.В. Андезитобазальты цеолитовой фации низкоградного метаморфизма (на примере эффузивов Болгарии)	62
<i>Юрченко Ю.Ю</i> . Геологическая позиция и строение базит-гипербазитового Кябского массива (Беломорский подвижный пояс)	65
МИНЕРАЛОГИЯ И КРИСТАЛЛОГРАФИЯ	
<i>Баженова Е. А.</i> Типохимизм флюоритов Шерловогорского района (В. Забайкалье)	. 71
Белоусова И.В., Пестриков А.А. Перспективы территории Северного Приладожья на выявление коренных источников алмазов	. 72
Бородулин Г.П., Чевычелов В.Ю., Зарайский Г.П. Растворимость Та и Nb в магматических расплавах по экспериментальным данным	
Васильева В.А. Особенности кристаллизации и химического состава титансодержащих гранатов	
андрадитового ряда в щелочно-ультраосновных комплексах	
$\it \Gamma adoesM.J.$ Особенности баритовой минерализации участка Северная жила месторождения Баритовая горка	. 77

Голубев Е.А., Ковалева О.В. Визуализация надмолекулярного строения балтийского янтаря методом	
	. 79
Гончаров А.Г., Салтыкова А.К. Валентное состояние железа в минералах перидотитовых ксенолитов верхней	
мантии в кайнозойских щелочных базальтах Байкало-Монгольской области (данные ядерно-гамма- резонансной спектроскопии)	01
резонансной спектроскопии)	
<i>Денисова Ю. В.</i> Осооенности цирконов гиколаишорского гранитоидного массива ггриполярного у рала	. 04
кимберлитов (Карелия)	
Кателя О.В. Акцессорные минералы среднедевонских алмазоносных отложений южного и среднего Тиммана	. 87
Кисеева Е.С. Особенности состава и строения цирконов из питерлитов Салминского гранитного плутона (Северное Приладожье)	. 89
Коньшев $A.А.$, $Aксюк A.M.$ Экспериментальная растворимость кварца во фторидных растворах при 200° С и $50-150$ МПа и расчет содержаний возможных частиц кремнезема	. 91
Котова Е.Н. Влияние высокотемпературного отжига на содержание алюминиевых парамагнитных центров	
в кварце	. 94
Купцова А.В., Петров С.В. Редкометалльная минерализация карбонатитов вулкана Керимаси (Восточно- Африканский рифт, С.Танзания)	. 96
Лыхин Д. А., Козловский А.М. Результаты изучения расплавных включений в кварце щелочных гранитов	
Ермаковского месторождения бериллия	. 99
<i>Макаров М.С., Степенщиков Д.Г., Войтеховский Ю.Л.</i> Использование теоремы Минковского в морфометрии кристаллов на примере гранатов г. Макзапахк	102
<i>Мельник М.Н., Степенщиков Д.Г., Войтеховский Ю.Л.</i> Перечисление комбинаторного многообразия	
шаровых укладок на сфере методом Монте-Карло	104
Оймахмадов И.С. К вопросу о стадийности формирования кварц-аметистовой минерализации на площади Сельбурского аметистоносного поля (Южный Тянь-Шань)	107
Серебряков Н.С. Генезис высокоглиноземистого сапфирина из корундсодержащих метасоматитов	
в метабазитах чупинской толщи Беломорского подвижного пояса	109
Сеткова Т.В., Шаповалов Ю.Б., Балицкий В.С. Устойчивость и синтез турмалина в сверхкритических	
водных флюидах	111
Сотникова Т.Д., Степенщиков Д.Г., Войтеховский Ю.Л. Перечисление выпуклых полиэдров без 3- и 4-угольных граней	113
<i>Таратин Н.В., Крючкова Л.Ю., Плоткина Ю.В., Гликин А.</i> Э. Дефектность и неоднородность смешанных кристаллов K(Cl,Br), выращенных из смешанных растворов	116
Фролов К.И., Степенщиков Д.Г., Войтеховский Ю.Л. Визуализация индикатрис 3-го порядка применительно к классификации петрографических структур	
	11)
ПЕТРОЛОГИЯ, ГЕОХИМИЯ, ГЕОХРОНОЛОГИЯ	
Алфимова Н.А., Матреничев В.А. Особенности строения профилей химического выветривания раннего докембрия Карелии	127
<i>Грошев Н.Ю.</i> Морфология и вещественный состав жил гранитоидов в интрузиве Панских тундр	
Дейнес Ю. Е. Литохимия максовитов максовской залежи	
Евсеева К.А., Чистяков А.В. Вулканиты раннего палеопротерозоя свиты ветреный пояс и Бураковский расслоенный плутон, как возможный интрузивный аналог (Карелия и Архангельская область)	
Епифанова Т.А., Казанов О.В., Каринен Т. Источники тел микрогабброноритов: результаты Sm-Nd изотопии	
<i>Климова Е.В., Алфимова Н.А.</i> Условия континентального выветривания в докембрии. Гипергенные	137
преобразования раннепротерозойских гранитов Лехтинской структуры (С. Карелия)	140
Корпечков Д.И. Эволюция процессов частичного плавления и метасоматоза при мигматизации амфиболитов Нигрозерской структуры, Северная Карелия	
Куринная У.Н., Петров С.В. Особенности вещественного состава грейзенов и грейзенизированных гранито-	
гнейсов Винбергского купола (Питкярантский рудный район, Карелия)	
гранулитов Порьей губы (Лапландский гранулитовый пояс)	149
Липенков Г.В., Сергеев А. В, Васильева В.А., Кузнецов В. А. Минералого-геохимические особенности	151
перидотит-пироксенит-габброноритового Улитаозерского массива	
матвиичук м.в. геохимия кароонатитов валтииского и украинского щитов	
тиминов Б.г. годиническая ларактеристика даск вознесснекого рудного узла (вт у в приморые	130

Мышинская И.И., Бубнова Т.П. К минералого-петрографической характеристике гранат-слюдистых сланцев и амфиболитов проявления Высота (северная Карелия)	150
и амфиоолитов продвления высота (северная карелия)	
пестеренко и.с. г сология, негрография, геохимия пород второй вулканогенной голици нечен скои структуры Ниткина Е.А., Жавков В.А.,Апанасевич Е.А., Баянова Т.Б. Возраст рудной минерализации	101
в породах платинометального Федорово-Панского массива по данным U-Pb датирования циркона	165
Пестриков А.А. Верхнемантийные ксенолиты из кимберлитов Якутской кимберлитовой провинции из щелочных базальтов Прибайкалья: петрография, геохимия, процессы плавления	169
Плотинская О.Ю., Коваленкер В.А. Коллоидные системы как концентраторы золота в эпитермальных	
условиях	172
Рожкова В.С., Рожкова Н.Н. Сравнительное исследование физико-химических свойств шунгита, наноалмаза и фуллеренсодержащей сажи	175
$Cepos\ \Pi.A.$ Фазы внедрения и длительность формирования расслоенного платиноносного Федорово-	
Панского интрузива: возрастные и изотопно-геохимические Sm-Nd данные	178
Шаматрина А.М. Минералого-петрографическая характеристика пород контактной зоны Ловозерского массива, Кольский полуостров	181
Франтц Н. А., Сибелев О. С. Новое проявление карбонатитов в районе оз. Котозеро (Северная Карелия)	
Франти Н.А. Петрология пород дайкового комплекса Тикшеозерского карбонатитового массива (Северная Карелия)	
Хорошкеева М.Н. Геохимические особенности красноцветных отложений района грабена Осло	
ЧЕТВЕРТИЧНАЯ ГЕОЛОГИЯ	
Буравская М.Н., Братущак Ю.В. Генезис послеледниковых отложений в верхнем течении р. Вычегды	
	190
Васько О. В. Развитие растительности юго- восточного побережья Онежского озера (болото Тикачевское)	
в позднеледниковье и голоцене	191
Гузеев Б.П., Шевченко В.П., Саввичев А.С., Новигатский А.Н., Карпенко А.А. Геохимия аллювия рек Ловозерских тундр и Хибин (Кольский полуостров)	193
ГЕОФИЗИКА И ПЕТРОФИЗИКА	
Глазнев В.Н., Жирова А.М., Раевский А.Б. Предварительные результаты комплексной интерпретации данных	
сейсмометрии и гравиметрии для Центральной части Кольского полуострова	199
Зайцев Γ . H . Исследование влияния контролируемого увлажнения и сушки шунгитовых пород на их	
электропроводящие свойства, по данным модельного эксперимента	203
	205
Мошников И.А. Электромагнитный спектральный анализ углеродосодержащих материалов при низких температурах	207
Нилов М.Ю. Геофизические исследования Северной Приграничной площади Ялонварского зеленокаменного	
пояса (Западная Карелия)	209
ГЕОЭКОЛОГИЯ, МОНИТОРИНГ ОКРУЖАЮЩЕЙ СРЕДЫ	
Абу-Хасан Махмуд Энергетический анализ отходов нефтезагрязненного балластного щебня	212
Бенза Е.В. Способы удаления аварийных нефтяных разливов с поверхности почвы	
Кожевникова М.В. Мониторинг образования и разработка методов утилизации бурового шлама	
Крутских Н.В. Условия формирования эколого-геологической обстановки бассейна Онежского озера	
Куликова М.А. Мониторинг почвенного покрова в зоне воздействия ОАО «Бокситогорский глинозем»	
Макарова Е.И. Экологические аспекты утилизации отходов в строительные материалы	
Макарова Ю.В. Учет изменчивости ландшафтных условий при обработке поисково-геохимических данных	224
Малышкин М.М. Решение проблем рекультивации шламовых амбаров нефтегазового комплекса Западной Сибири	227
Наумовец М.Ю. Государственный мониторинг подземных вод на территории Санкт-Петербурга	
Овсепян А.Э., Федоров Ю.А. О некоторых особенностях распределения ртути в донных отложениях устьевой области р. Северная Двина	
Пантелеева Я.Г. Экологически опасные элементы и минералы в сырье, продуктах и отходах	_5(
ОАО «Карельский окатыш» и уровни накопления загрязняющих веществ в окружающей среде	233
Питиримов П.В. Распределение ртути в почвах Санкт-Петербургского Государственного Университета	
Пухаева З.Э. Литохимические ореолы колчеданно-полиметаллических месторождений и их геоэкологическое	
значение	

Научное издание

ГЕОЛОГИЯ, ПОЛЕЗНЫЕ ИСКОПАЕМЫЕ И ГЕОЭКОЛОГИЯ СЕВЕРО-ЗАПАДА РОССИИ

Материалы XVII молодежной конференции, посвященной памяти К.О.Кратца

Печатается по решению Ученого совета Института геологии Карельского научного центра Российской академии наук

Материалы конференции отпечатаны в авторской редакции

Изд. лиц. № 00041 от 30.08.99 г. Сдано в печать 22.09.06. Формат $60x84^{1}/_{8}$. Гарнитура Times Печать офсетная. Уч.-изд. л. 30,0. Усл. печ. л. 28,4. Тираж 200 экз. Изд. № 57. Заказ № 602.

Карельский научный центр РАН Редакционно-издательский отдел Петрозаводск, пр. А. Невского, 50